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bstract

This paper provides an overview of the state of the art of subspace identification methods for both open-loop and closed-loop systems. Practical
onsiderations and future directions are given at the end of the paper.
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. Introduction

Subspace identification methods (SIM) have enjoyed tremen-
ous development in the last 15 years in both theory and practice.
IMs offer an attractive alternative to input-output methods due

o simple and general parametrization for MIMO systems (there
s no linear input-output parametrization that is general enough
or all linear MIMO systems, see (Katayama, 2005)). Most SIMs
all into the unifying theorem proposed by van Overschee and de

oor (1995), among which are canonical variate analysis (CVA)
Larimore, 1990), N4SID (van Overschee & de Moor, 1994),
ubspace splitting (Jansson & Wahlberg, 1996), and MOESP
Verhaegen & Dewilde, 1992). Based on the unifying theorem,
ll these algorithms can be interpreted as a singular value decom-
osition of a weighted matrix. The statistical properties such
s consistency and efficiency have been investigated recently
Bauer, 2003; Bauer & Ljung, 2002; Gustafsson, 2002; Jansson

Wahlberg, 1998; Knudsen, 2001).
The closed-loop identification is of special interest for a large

umber of engineering applications. For safety reasons or quality
estrictions, it is desirable that identification experiments are car-
ied out under the closed-loop or partial closed-loop condition.
s pointed out by many researchers (Ljung, 1999; Soderstrom

Stoica, 1989), the fundamental problem with closed-loop data

s the correlation between the unmeasurable noise and the input.
his is true for traditional closed-loop identification approaches
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uch as the prediction error methods (PEMs) (Forssell & Ljung,
999). It causes additional difficulty for SIMs.

Although SIM algorithms are attractive because of the state
pace form that is very convenient for estimation, filtering, pre-
iction and control, several drawbacks have been recognized. In
eneral, the estimates from SIMs are not as accurate as those
rom prediction error methods. Further, it is not until recently
ome SIMs are applicable to closed-loop identification, even
hough the data satisfy identifiability conditions for traditional

ethods such as PEMs.
Unlike PEMs, the traditional SIMs (e.g., CVA, N4SID and

OESP) are biased under closed-loop condition, which requires
pecial treatment. Verhaegen (1993) proposed a closed-loop
IM via the identification of an overall open-loop state space
odel followed by a model reduction step to obtain state space

epresentations of plant and controller. Ljung and McKelvey
1996) investigated the SIM through the classical realization
ath and proposed a recursive approach based on ARX model as
feasible closed-loop SIM. Formulated in an errors-in-variables

EIV) framework, Chou and Verhaegen (1997) proposed a new
IM that can be applied to closed-loop data. The algorithm has to

reat white input from non-white input differently. Wang and Qin
2002) proposed the use of parity space and principal component
nalysis (PCA) for EIV and closed-loop identification which is
pplicable to correlated input excitation. Recent work of Qin
nd Ljung (2003a), Jansson (2003), and Chiuso and Picci (2005)

nalyzed SIMs with feedback, proposed several new closed-loop
IMs and provided theoretical analysis to these methods.

The purpose of this paper is to provide an overview of the
tate of the art in both open-loop and closed-loop SIMs. The

mailto:qin@che.utexas.edu
dx.doi.org/10.1016/j.compchemeng.2006.05.045
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aper starts with basic stochastic system representations and
ssumptions, then reviews most existing SIMs in the literature
o date. Practical considerations and future directions are given
o conclude the paper.

. Models, notations, and assumptions

.1. Stochastic state space models

A stochastic linear system can be written in the following
rocess form,

k+1 = Axk + Buk + wk (1a)

k = Cxk + Duk + vk (1b)

here yk ∈ Rny , xk ∈ Rn, uk ∈ Rnu , wk ∈ Rn, and vk ∈ Rny are
he system output, state, input, state noise, and output measure-

ent noise, respectively. A, B, C and D are system matrices with
ppropriate dimensions.

It is well known that one can design a Kalman filter for this
ystem to estimate the state variables if the system is observable,

ˆk+1 = Ax̂k + Buk + K(yk − Cx̂k − Duk) (2)

here K is the steady state Kalman gain that can be obtained
rom an algebraic Ricatti equation. Denoting

k = yk − Cx̂k − Duk

s the innovations of the Kalman filter and ignoring the ”∧“on
k in the rest of this paper, we have the following equivalent
nnovation form,

k+1 = Axk + Buk + Kek (3a)

k = Cxk + Duk + ek (3b)

here the innovation ek is white noise and independent of past
nput and output data. The system described by (2) can also be
epresented in the predictor form,

k+1 = AKxk + BKzk (4a)

k = Cxk + Duk + ek (4b)

here zk = [uT
k , yT

k ]
T

, AK = A − KC, and BK = [B − KD, K].
The three model forms, that is, the process form, the inno-

ation form, and the predictor form, all can represent the input
nd output data (uk, yk) exactly. Therefore, one has the option to
se any of these forms for convenience. For example, the well-
nown N4SID (Overschee & Moor, 1994) algorithm uses the
rocess form. The MOESP (Verhaegen, 1994) algorithm uses
he innovation form. For the convenience of closed-loop identi-
cation, Chiuso and Picci (2005) use the predictor form.

The subspace identification problem is: given a set of
nput/output measurements, estimate the system matrices (A,
, C, D), Kalman filter gain K up to within a similarity transfor-

ation, and the innovation covariance matrix Re.
There are also minor differences among these model forms.

he process form and the innovation form use the process (A,
, C, D) matrices, while the predictor form uses the (AK, BK,

O

y
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, D) matrices. Since AK = A − KC is guaranteed stable even
hough the original process A matrix is unstable, the predictor
orm is numerically advantageous for identifying both stable
nd unstable processes. The other two model forms may lead to
ll-conditioning for unstable processes (Chiuso & Picci, 2005).
owever, the optimal Kalman gain K is time-varying for finite
umber of samples, making AK time varying even though the
riginal process is time invariant. This is a minor drawback of
he predictor form for limited number of samples.

Based on state space description in (4), an extended state
pace model can be formulated as

f (k) = Γ̄f xk + Ḡf zf−1(k) + Df uf (k) + ef (k) (5)

here the subscript f denotes the future horizon. The extended
bservability matrix is

¯
f =

⎡⎢⎢⎢⎢⎢⎣
C

CAK

...

CA
f−1
K

⎤⎥⎥⎥⎥⎥⎦ ; Df =

⎡⎢⎢⎢⎢⎣
D

D

...

D

⎤⎥⎥⎥⎥⎦

¯
f =

⎡⎢⎢⎢⎢⎢⎣
0 0 . . . 0

CBK 0 . . . 0
...

...
. . .

...

CA
f−2
K BK CA

f−3
K BK . . . CBK

⎤⎥⎥⎥⎥⎥⎦
here the overbar means that the matrix is composed of param-

ters of the predictor form.
The input and output are arranged in the following form:

f (k) =

⎡⎢⎢⎢⎢⎣
yk

yk+1

...

yk+f−1

⎤⎥⎥⎥⎥⎦ (6a)

f−1(k) =

⎡⎢⎢⎢⎢⎣
zk

zk+1

...

zk+f−2

⎤⎥⎥⎥⎥⎦ (6b)

f(k) and ef(k) are formed similar to yf(k).
By iterating (4) it is straightforward to derive the following

elation,

k = L̄pzp(k) + A
p
Kxk−p (7)

here

¯
p =

[
BK AKBK . . . A

p−1
K BK

]
(8a)

p(k) = [
zT
k−1 zT

k−2 . . . zT
k−p

]T
(8b)
ne can substitute (7) into (5) to obtain

f (k) = Γ̄f L̄pzp(k) + Γ̄f A
p
Kxk−p + Ḡf zf−1(k)

+ Df uf (k) + ef (k) (9)
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t is clear that the product of the observability and controllability
atrices,

¯
fp � Γ̄f L̄p =

⎡⎢⎢⎢⎢⎢⎣
CBK CAKBK . . . CA

p−1
K BK

CAKBK CA2
KBK . . . CA

p
KBK

...
... . . .

...

CA
f−1
K BK CA

f
KBK . . . CA

f+p−2
K BK

⎤⎥⎥⎥⎥⎥⎦
(10)

s the Hankel matrix which contains the predictor Markov
arameters. Ḡf also contains the predictor Markov parameters.

.2. Assumptions

To establish the foundation of the SIM, we introduce follow-
ng assumptions:

1: The eigenvalues of A − KC are strictly inside the unit circle.
2: The system is minimal in the sense that (A, C) is observable

and (A, [B, K]) is controllable.
3: The innovation sequence ek is a stationary, zero mean, white

noise process with second order moment

E(eie
T
j ) = Reδij

where δij is the Kronecker delta.
4: The input uk and innovation sequence ej are uncorrelated

for open-loop data, but uk is directly related to past inno-
vation ek for closed-loop data.

5: The input signal is quasi-stationary (Ljung, 1999) and is
persistently exciting of order f + p, where f and p stand for
future and past horizons, respectively, to be defined later.

From these assumptions we can relate the state space model
orms to more traditional input-output models. For example, the
nnovation form (3) can be converted to the following input-
utput model,

k = [C(qI − A)−1B + D]uk + [C(qI − A)−1K + I]ek (11)

rom which the Box-Jenkins model or the ARMAX model can
e recovered. Equivalently, the noise term in the Box-Jenkins
odel plays the role of innovation in the Kalman filter. The

redictor form (4) can be converted to

k = C(qI − AK)−1BKzk + Duk + ek (12)

ince AK is strictly stable based on Assumption A1,

qI − AK)−1 =
∞∑
i=1

Ai
Kq−i
an be truncated to a large number p and (12) reduces to

k=̇
p∑

i=1

CAi
KBKzk−i + Duk + ek (13)
gineering 30 (2006) 1502–1513

hich is the well-known high-order ARX (HOARX) model used
n the asymptotic methods (Ljung, 1999).

.3. Linear regression and projections

We introduce the notation for linear regression and projec-
ions used in this paper. Given the input vector x(k) and output
ector y(k), a linear relation

(k) = Θx(k) + v(k)

an be built by collecting data for input and output variables and
orming the data matrices

y(1) y(2) . . . y(N)
]︷︷ ︸

Y

= Θ
[
x(1) x(2) . . . x(N)

]︸ ︷︷ ︸
X

+ V

here V is the matrix of noise.
By minimizing

= ||Y − ΘX||2F ,

here ||·||F is the F-norm, we have the least squares solution

ˆ = YXT (XXT )
−1

he model prediction is

ˆ = Θ̂X = YXT (XXT )
−1

X

efining

X = XT (XXT )
−1

X

s the projection matrix to the row space of X, then

ˆ = YXT (XXT )
−1

X = YΠX

s a projection of Y on X. The least square residual is

˜ = Y − Ŷ = Y (I − ΠX) = YΠ⊥
X

here
⊥
X = I − ΠX = I − XT (XXT )

−1
X

s the projection to the orthogonal complement of X. It is easy
o verify that the model Ŷ and the residual Ỹ are orthogonal.

Furthermore,

ΠX = XXT (XXT )
−1

X = X

Π⊥
X = X(I − XT (XXT )

−1
X) = X − X = 0

or a model with two sets of input X and U with noise V

= ΓX + HU + V = [ Γ H ]

[
X

U

]
+ V (14)

e can find [ Γ H ] by least squares, assuming V is independent
f both regressors X and U.

If we are only interested in estimating Γ , using the fact that
is independent of U, that is
1

N
VUT = 1

N
[ v(1), . . . , v(N) ] [ u(1), . . . , u(N) ]T

→ 0 as N → ∞
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e have

Π⊥
U = V (I − UT (UUT )

−1
U) = V − VUT (UUT )

−1
U

= V −
(

1

N
VUT

) (
1

N
UUT

)−1

U → V as N → ∞

herefore,

Π⊥
U = (ΓX + HU + V )Π⊥

U = ΓXΠ⊥
U + V

can be found by regressing YΠ⊥
U on XΠ⊥

U as follows,

ˆ = YΠ⊥
U XT (XΠ⊥

U XT )
−1

(15)

here the relation (Π⊥
U )

2 = Π⊥
U is used. It is straight-forward

o show that Γ̂ from (15) is identical to the least squares solution
f (14). See Appendix of (van Overschee & de Moor, 1995).

.4. General SIM procedures

Most SIMs involve some or all of the following steps:

1) Step 1: Pre-estimation. In this step either the Markov param-
eters as in (13) (Jansson, 2003; Larimore, 2004; Shi &
MacGregor, 2001) or the innovation sequence ek (Qin &
Ljung, 2003b) is pre-estimated from a high-order ARX
(HOARX) model.

2) Step 2: Regression or Projection. In this step a least squares
regression or projection is performed to estimate one or sev-
eral (up to f) high-order models.

3) Step 3: Model Reduction. The high-order model identified
in Step 2 is reduced to an appropriate low dimensional sub-
space that is observable. This step gives the estimates of Γ f
or the state sequence xk.

4) Step 4: Parameter Estimation. The reduced observability
matrix or the realized state sequence from Step 3 is used to
estimate the state space parameters A, B, C, D and K.

5) Step 5: Iteration. The above steps can be iterated to improve
accuracy.

Pre-estimation in Step 1 is usually designed to deal with
losed-loop identification. It is also used to enforce the trian-
ular structure of Hf and thus a causal model. Sometimes Steps
and 3 are done in one combined step, but they can always be
ritten in two separate steps. Step 4 is where parametrization

akes place, which is unique up to a similarity transform.

. Open-loop subspace methods

The early developments of SIMs are applicable to open-
oop identification where the input data are assumed indepen-
ent of past noise, which admits no feedback. These methods
nclude N4SID, MOESP and the CVA method without the pre-
stimation step.
Based on the innovation form in (3), an extended state space
odel can be formulated as

f = Γf Xk + Hf Uf + Gf Ef (16)

t

gineering 30 (2006) 1502–1513 1505

here the subscript f denotes future horizon, respectively. The
xtended observability matrix is

f =

⎡⎢⎢⎢⎢⎣
C

CA

...

CAf−1

⎤⎥⎥⎥⎥⎦ (17)

nd Hf and Gf are Toeplitz matrices:

f =

⎡⎢⎢⎢⎢⎣
D 0 · · · 0

CB D . . . 0
...

...
. . .

...

CAf−2B CAf−3B · · · D

⎤⎥⎥⎥⎥⎦ (18a)

f =

⎡⎢⎢⎢⎢⎣
I 0 · · · 0

CK I . . . 0
...

...
. . .

...

CAf−2K CAf−3K · · · I

⎤⎥⎥⎥⎥⎦ (18b)

he input data are arranged in the following Hankel form:

f =

⎡⎢⎢⎢⎢⎣
uk uk+1 · · · uk+N−1

uk+1 uk+2 . . . uk+N

...
...

. . .
...

uk+f−1 uk+f · · · uk+f+N−2

⎤⎥⎥⎥⎥⎦ (19a)

f = [ uf (k) uf (k + 1) . . . uf (k + N − 1) ] (19b)

imilar formulations are made for Yf and Ef. The state sequences
re defined as:

k = [ xk, xk+1, . . . , xk+N−1 ] (20)

he Kalman state Xk is unknown, but we know that the Kalman
tate is estimated from past input and output data based on (7),

k = L̄pZp + A
p
KXk−p (21)

here Xk−p = [ xk−p, xk−p+1, . . . , xk−p+N−1 ]. For a
ufficiently large p, A

p
K � 0. Hence, from (21) and (16),

f = Γf L̄pZp + Hf Uf + Gf Ef

= HfpZp + Hf Uf + Gf Ef (22)

here Hfp = Γf L̄p is the product of the process observability
atrix and the predictor controllability matrix. It is analogous to

¯
fp in (10) but it is not exactly a Hankel matrix. However, it does

ave a reduced rank n which is less than the matrix dimensions.
Eqs. (16) and (22) can both be used to explain open-loop

IMs, whichever is more convenient. Under open-loop condi-

ions, Ef is uncorrelated to Uf, that is,

1

N
Ef UT

f → 0 as N → ∞, (23)
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r

f Π⊥
Uf

= Ef (I − UT
f (Uf UT

f )
−1

Uf ) = Ef

urthermore, Ef is uncorrelated to Zp from the Kalman filter
heory. Therefore,

1

N
Ef ZT

p → 0 as N → ∞ (24)

he above two relations (23) and (24) are very useful in open-
oop SIMs.

The open-loop SIMs do not involve a pre-estimation step.
ost of them involve only three major steps: projection or

egression, model reduction, and parameter estimation. We will
ummarize each step in the following subsections.

.1. SIM projections and model reduction

.1.1. N4SID
Open-loop SIMs such as the N4SID (Overschee & Moor,

994) first eliminate Uf by post-multiplying Π⊥
Uf

on (22),

f Π⊥
Uf

= HfpZpΠ⊥
Uf

+ Hf Uf Π⊥
Uf

+ Gf Ef Π⊥
Uf

= HfpZpΠ⊥
Uf

+ Gf Ef (25)

hen the noise term is removed by multiplying ZT
p from the

esult of (24),

f Π⊥
Uf

ZT
p = HfpZpΠ⊥

Uf
ZT

p + Gf Ef ZT
p = HfpZpΠ⊥

Uf
ZT

p

nd

ˆ
fp = Yf Π⊥

Uf ZT
p (ZpΠ⊥

Uf ZT
p )

−1

4SID performs SVD on

ˆ
fpZp = ̂Γf L̄pZp = USVT � UnSnV

T
n

here Sn contains the n largest singular values, and chooses
ˆ
f = UnS

1/2
n as the estimated observability matrix, which is a

pecial, balanced realization. Since Γ f and L̄p are observabil-
ty and controllability matrices for different models, this is not
xactly a balanced realization.

.1.2. Regression approach
Perform least square solution to (25) by minimizing

= ||Yf Π⊥
Uf

− HfpZpΠ⊥
Uf

||2F ,

ˆ
fp = ̂Γf L̄p = Yf Π⊥

Uf
(Π⊥

Uf
ZT

p )(ZpΠ⊥
Uf

Π⊥
Uf

ZT
p )

−1

= Yf Π⊥
Uf

ZT
p (ZpΠ⊥

Uf
ZT

p )
−1

(26)

ote that the rank of Γf L̄p should be n. In the model reduction
tep we perform SVD,
ˆ
fp = ̂Γf L̄p = USVT � UnSnV

T
n

nd choose Γ̂f = UnS
1/2
n as the observability matrix. The

bserver-Kalman filter method (OKID) (Phan, Horta, Juang,

i
e

t

gineering 30 (2006) 1502–1513

Longman, 1992) uses this approach. The MOESP algorithm
Verhaegen, 1994) uses this linear regression and performs SVD
n ĤfpZpΠ⊥

Uf
.

.1.3. CVA approach
Since the coefficient matrix Hfp = Γf L̄p in (25) is not full

ank, the exact solution to (25) should be the canonical correla-
ion analysis (CCA) which performs SVD on

rYf Π⊥
Uf

Π⊥
Uf

ZT
pWc = WrYf Π⊥

Uf
ZT

pWc � UnSnV
T
n

nd chooses Γ̂f = W−1
r UnS

1/2
n for balanced realization.

n the above equation Wr = (Yf Π⊥
Uf

YT
f )

−1/2
, Wc =

ZpΠ⊥
Uf

ZT
p )

−1/2
. This is exactly canonical correlation

nalysis which extracts the n smallest angles between Yf Π⊥
Uf

nd ZpΠ⊥
Uf

.

.1.4. A unified formulation
van Overschee and de Moor (1995) have unified several SIMs

n the open-loop case which offer insights into the relations
mong the SIMs. For the three SIM algorithms presented above,
hey are all equivalent to performing SVD on

1ĤfpW2 = UnSnV
T
n (27)

here Ĥfp is the least squares estimate in (26) and for
he regression approach, W1 = I, W2 = I, for N4SID, W1 = I,

2 = (ZpZT
p )

1/2
, for MOESP, W1 = I, W2 = (ZpΠ⊥

Uf
ZT

p )
1/2

,

or CVA, W1 = (Yf Π⊥
Uf

YT
f )

−1/2
, W2 = (ZpΠ⊥

Uf
ZT

p )
1/2

.
It is pointed out in (Gustafsson & Rao, 2002) that the weight-

ng W1 has little impact on the results and the solution to Γ f will
ndo this weighting

ˆ
f = W−1

1 UnS
1/2
n .

owever, for finite data length W1 can make a difference since
25) is indeed a reduced rank regression. A requirement for the
eights is that W1 is nonsingular and W2 does not reduce rank

or HfpW2.

.2. Enforcing causal models

In the extended state space model (22) Hf is block-triangular,
hich makes the model causal. However, this information is
ot normally taken care of in SIMs, as pointed out in (Shi &
acGregor, 2001). While there is no problem from a consis-

ency point of view given proper excitation of the input, known
arameters are estimated from data. Shi (2001) proposes an algo-
ithm known as CVAHf that removes the impact of future input
rom the future output using pre-estimated the Markov parame-
ers and then performs sub-space projections. Shi (2001) further
hows that this procedure achieves consistency. Larimore (2004)
rgues that the CVAHf was implemented in Adaptx and that it

s efficient, but he does not discuss the impact of imperfect pre-
stimates.

To avoid these problems the SIM model must not include
hese non-causal terms, Peternell, Scherrer, and Deistler (1996)
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ropose a few methods to exclude these extra terms. Specifi-
ally, they recommend a two-step procedure: (i) use a conven-
ional (unconstrained) SIM to estimate the deterministic Markov
arameters CAi−1B; and (ii) form Hf with these Markov param-
ters to ensure that it is lower triangular and then estimate the
xtended observability matrix. Qin and Ljung (2003a), Qin et al.
2005) propose a causal subspace identification method (PAR-
IM) which remove these non-causal terms by performing f least
quares projections in parallel. To accomplish this we partition
he extended state space model row-wise as follows:

f =

⎡⎢⎢⎢⎢⎣
Yf1

Yf2

...

Yff

⎤⎥⎥⎥⎥⎦ ; Yi �

⎡⎢⎢⎢⎢⎣
Yf1

Yf2

...

Yfi

⎤⎥⎥⎥⎥⎦ ; i = 1, 2, . . . , f (28)

here Yfi = [ yk+i−1 yk+i . . . yk+N+i−2 ]. Partition Uf
nd Ef in a similar way to define Ufi, Ui, Efi and Ei, respectively,
or i = 1, 2, . . ., f. Denote further

f =

⎡⎢⎢⎢⎢⎣
Γf1

Γf2

...

Γff

⎤⎥⎥⎥⎥⎦ (29a)

fi � [ CAi−2B . . . CB D ] (29b)

fi � [ CAi−2K . . . CK I ] (29c)

here Γ fi = CAi−1. We have the following equations by parti-
ioning (22),

fi = ΓfiL̄pZp + HfiUi + GfiEi (30)

or i = 1, 2, . . ., f. Note that each of the above equations is guar-
nteed causal. Now we have the following parallel PARSIM
lgorithm.

. Parallel PARSIM (PARSIM-P)

1) Perform the following LS estimates, for i = 1, 2, . . ., f,

[
̂ΓfiL̄p Ĥfi

]
= Yfi

[
Zp

Ui

]†
(31)

where [·]† is the Moore-Penrose pseudo-inverse. Stack
̂ΓfiL̄p, together to obtain Γ̂f L̄p as⎡⎢⎢ ̂Γf1L̄p

̂Γ L̄

⎤⎥⎥
⎢⎢⎢⎢⎣
f2 p

...

̂Γff L̄p

⎥⎥⎥⎥⎦ = ̂Γf L̄p (32)
Y
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2) Perform SVD for the following weighted matrix

W1

(
̂Γf L̄p

)
W2 � UnSnV

T
n (33)

where W1 is nonsingular and L̄pW2 does not lose rank. Un,
Sn and Vn are associated to the n largest singular values. For

CVA weighting we can choose W1 = (Yf Π⊥
Uf YT

f )
−1/2

and

W2 = (ZpΠ⊥
Uf ZT

p )
1/2

We choose

Γ̂f = W−1
1 UnS

1/2
n (34)

from which the estimate of A and C can be obtained
(Verhaegen, 1994).

3) The estimate of B and D is discussed in the end of this
section.

.1. Estimating A and C from �f

In the subspace identification literature A and C are extracted
rom Γ f by choosing f ≥ n + 1, making Γ f−1 also full column
ank. Denoting

2:f
f = Γf (ny + 1 : nyf, :)

hich is the bottom (f − 1) block rows of Γ f, we have

2:f
f = Γf−1A

herefore,

ˆ = Γ̂
†
f−1Γ̂

2:f
f

he estimate of C is simply

ˆ = Γ̂f (1 : ny, :).

.2. Estimation of K

A simple method to estimate the Kalman filter gain K is to
xtract it from L̄p. From the unified expression (27), we have:

1Γ̂f
ˆ̄LpW2 = UnSnV

T
n

nd W1Γ̂f is chosen a UnS
1/2
n ,

ˆ̄
pW2 = S1/2

n VT
n

herefore,

ˆ̄
p = S1/2

n VT
n W−1

2

ote that L̄p is the extended controllability matrix of the predic-
or. Similar to the extraction of Â and Ĉ from Γ̂f , we can extract
ˆ

K and [ B̂K K̂ ].
Another approach to estimating K is to extract it from Gf (Qin

t al., 2005).
From (22) we have
f Π⊥[
Zp

Uf

] = Gf Ef Π⊥[
Zp

Uf

] = Gf Ef (35)
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ince Ef is not correlated with Zp and Uf in open-loop. Perform-
ng QR decomposition,

Zp

Uf

Yf

⎤⎥⎦ =

⎡⎢⎣R11

R21 R22

R31 R32 R33

⎤⎥⎦
⎡⎢⎣Q1

Q2

Q3

⎤⎥⎦ (36)

hen

33Q3 = Gf Ef (37)

enoting ek = Fe∗
k such that cov(e∗

k) = I, from Assumption A3
e have FFT = Re. Using this notation we have

f Ef = G∗
f E∗

f (38)

here

∗
f =

⎡⎢⎢⎢⎢⎣
F 0 . . . 0

CKF F . . . 0
...

...
. . .

...

CAf−2KF CAf−3KF · · · F

⎤⎥⎥⎥⎥⎦ ∈ 	nyf×nyf

rom Eqs. (37) and (38) and using the fact that Q3 is an orthonor-
al matrix, we choose

ˆ ∗
f = Q3 (39a)

ˆ ∗
f = R33 (39b)

enoting the first block column of G∗
f by G∗

f1,

∗
f1 =

⎡⎢⎢⎢⎢⎣
F

CKF

...

CAf−2KF

⎤⎥⎥⎥⎥⎦ =
[

Iny 0

0 Γ̂f−1

] [
F

KF

]
(40)

F and F can be estimated as

F̂

K̂F

]
=

[
Iny 0

0 Γ̂f−1

]†
G∗

f1 (41)

inally,

ˆ = ̂(KF )F̂−1 (42)

nd

ˆ
e = F̂ F̂ T (43)

.3. Determination of B, D

Qin et al. (2005) give an optimal approach to estimate B
nd D and the initial state using A, C, K and F for the general
nnovation form. Since the initial state is estimated this step does

ot introduce a bias for finite p.

From the innovation form of the system we have:

k+1 = AKxk + BKuk + Kyk
(44)

F
M

f

gineering 30 (2006) 1502–1513

he process output can be represented as

k = C(qI − AK)−1x0 + [C(qI − AK)−1BK + D]uk

+ C(qI − AK)−1Kyk
+ ek (45)

r

k = [I − C(qI − AK)−1K]yk

= C(qI − AK)−1x0 + [C(qI − AK)−1BK + D]uk + ek

(46)

sing ek = Fe∗
k where e∗

k has an identity covariance matrix, and
efining

˜k = F−1[I − C(qI − AK)−1K]yk (47a)

(q) = F−1C(qI − AK)−1 (47b)

∗ = F−1D (47c)

e obtain,

˜k = G(q)BKuk + D∗uk + G(q)x0δk + e∗
k

= G(q) ⊗ uT
k vec(BK) + Iny ⊗ uT

k vec(D∗) + G(q)x0δk + e∗
k

(48)

here vec(BK) and vec(D*) are vectorized BK and D* matrices
long the rows. δk is the Kronecker delta function. Now vec(BK),
ec(D*) and x0 can be estimated using least squares from the
bove equation. The B, D matrices can be backed out as:

ˆ = FD̂∗ (49a)

ˆ = B̂K + KD̂ (49b)

.4. Estimating all parameters from the state

An alternative approach is to estimate all model parameters
rom the state sequence. With the estimate of ˆ̄Lp we have

ˆk � ˆ̄Lpzp(k)

rom (3) we obtain

Ĉ D̂ ] = arg min

⎧⎨⎩
N∑

k=1

∥∥∥∥∥yk − [ C D ]

[
x̂k

uk

]∥∥∥∥∥
2
⎫⎬⎭ êk

= yk − [ Ĉ D̂ ]

[
x̂k

ûk

]

Â B̂ K̂ ] = arg min

⎧⎪⎨⎪⎩
N∑

k=1

∥∥∥∥∥∥∥xk − [ A B K ]

⎡⎢⎣ x̂k

uk

êk

⎤⎥⎦
∥∥∥∥∥∥∥

2⎫⎪⎬⎪⎭

or more detail see (Ljung & McKelvey, 1996; Overschee &
oor, 1994), and (Chiuso & Picci, 2005).
As one can see from the above illustration, two major paths

or open-loop SIMs are to use the estimates of Γ f or xk to further
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stimate the model parameters. However, no results are available
s to which path leads to a better model.

. Closed-loop SIMs

In order to identify a state space model with closed-loop data,
couple of closed-loop subspace identification methods (SIMs)
ave been proposed in the last decade (Ljung & McKelvey, 1996;
an Overschee & de Moor, 1997; Verhaegen, 1993). More recent
ork is presented in (Jansson, 2003; Qin & Ljung, 2003b),
hich has been regarded as a significant advance in subspace

dentification of feedback systems (Chiuso & Picci, 2005). The
onsistency of the algorithms has been investigated in (Chiuso

Picci, 2005; Lin, Qin, & Ljung, 2004).
Due to the feedback control the future input is correlated with

ast output measurement or past noise, making the traditional
IMs biased. That is, the last two terms of (22) are correlated for
losed-loop systems. Therefore, most of the closed-loop SIMs
ry to decouple these two terms. The SIMPCA methods proposed
n (Wang & Qin, 2002) and a later modification in (Huang, Ding,

Qin, 2005) move HfUf to the LHS and use principal compo-
ent analysis on the joint input/output data simultaneously. The
bserver/Kalman filter identification (OKID) algorithm (Phan
t al., 1992), which is not traditionally known as SIMs, does not
se an extended future horizon, therefore is free from the bias
roblem. These are some of the closed-loop SIMs which do not
equire special manipulations.

Most closed-loop SIMs involve four or five of the steps out-
ined in Section II-D. Based on the notation in Section II-A, we
ave four different approaches to estimate the model parameters:

1) Estimate the Markov parameters from a high-order ARX
(HOARX) model, form the Hankel matrix Hfp, then perform
SVD on Hfp to estimate AK, BK and C. (OKID, Phan et al.,
1992);

2) Estimate the Markov parameters from a high-order ARX
model, form Ḡf , then estimate Γ̄f L̄p from (9) and perform
SVD to estimate AK, BK and C (SSARX, Jansson, 2003;
CVA, Larimore, 2004); and

3) Partition (9) row-wise into f separate sub-problems, enforce
causal relations similar to (Qin & Ljung, 2003a), estimate
Γ̄f L̄p (or L̄pzp(k) as the state vector), and then estimate A,
B, C and D. (WFA, Chiuso & Picci, 2004; Chiuso & Picci,
2005).

4) Pre-estimate the innovation Ef from a HOARX and use (22)
to estimate the state space model (Qin & Ljung, 2003b).

ince (22) is actually composed of f block rows in each term and
he first block row gives an estimate of the innovation, Qin and
jung (2003b) propose an innovation estimation method (IEM)

hat partitions (22) into f block rows and uses the estimated
nnovation from previous block rows to further estimate model
arameters of the next block row sequentially. An alternative

ethod known as IEM1 (Lin et al., 2004) estimates the innova-

ion from the first block row and then treats êk as known to esti-
ate other model parameters. The SSARX approach proposed

n (Jansson, 2003) uses the predictor form (4) and pre-estimates

t
(
e
h

gineering 30 (2006) 1502–1513 1509

high-order ARX model to decouple the correlation between Uf
nd Ef. The well-known CVA algorithm proposed by Larimore
1990) actually pre-estimates Hf using a high-order ARX and
hen move Ĥf Uf to the LHS of (22). Shi and MacGregor (2001)
lso use this technique.

Inspired from the SSARX approach, Chiuso and Picci (2005)
ive a variation known as the whitening filter approach (WFA)
hat uses the predictor model form and carry out multi-stage
rojections row by row. In each block row projection causality is
trictly enforced, similar to (Qin et al., 2005). No pre-estimation
s involved but the projections have to be done block-row wise
o decouple noise from control input. In the rest of this section
e briefly introduce these closed-loop SIMs.

.1. Innovation estimation method

Partitioning the last term of (30) into two parts, we obtain

fi = ΓfiL̄pZp + HfiUi + G−
fiEi−1 + Efi (50)

here

−
fi = [ CAi−2K . . . CK ].

or i = 1, (50) becomes,

f1 = CL̄PZP + DU1 + Ef1 (51)

hich is a high-order ARX model. Typically D = 0 in (51).
ence, (51) is suitable for closed-loop data since Ef1 is always
ncorrelated of past data Zp. In the case that D �= 0, there must be
delay in the feedback loop, making U1 uncorrelated with Ef1.
s a consequence, we can obtain unbiased estimates of CL̄P ,
, and Ef1 from (51) using closed-loop data.
The innovation estimation method proposed in (Lin, Qin, &

jung, 2006) (IEM1) uses (51) to pre-estimate Êf1, then form
ˆ

i−1 by using the shift structure of Ei−1, and replace Ei−1 in (50)
sing Êf1 to estimate ΓfiL̄p. Since the only error term in (50) is
fi which is “future” relative to Ui, it is suitable for closed-loop
ata.

The innovation estimation method proposed in (Lin et al.,
004; Qin & Ljung, 2003b) (IEM) involves estimating innova-
ion sequence repeatedly row-wise and estimating Γ f through a
eighted singular value decomposition. A, B, C, D and K can

lso be obtained as illustrated in the previous section.

.2. SIMs with pre-estimation

For convenience we assume D = 0 to simplify the presenta-
ion. Suppose that p is chosen large enough so that A

p
K � 0, (9)

an be written as

f (k) = Γ̄f L̄pzp(k) + Ḡf zf−1(k) + ef (k) (52)

ue to feedback ef(k) is correlated with zf−1(k). Since Ḡf con-

ains the Markov parameters of the predictor form, Jansson
2003), Shi and MacGregor (2001) and Larimore (2004) pre-
stimate Ḡf (or part of Ḡf that is related to uf(k)) from a
igh-order ARX model (13). Then, the estimate Ḡf is used to
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efine a new vector

˜f (k) = yf (k) − ˆ̄Gf zf−1(k) = Γ̄f L̄pzp(k) + ef (k)

ow the error term ef(k) is uncorrelated with past data zp(k),
aking it suitable for closed-loop data. The model coefficient

¯
f L̄p can be estimated using least squares and then SVD or

eighted SVD is performed to obtain ˆ̄Γ f . Alternatively, one

an perform CCA between ỹ(k) and zp(k) to obtain ˆ̄Γ f and ˆ̄Lp

n one step, leading to the CVA approach in (Larimore, 2004).

.3. Whitening filter approach

Chiuso and Picci (2005) observe that one does not need to
re-estimate Ḡf if the triangle structure of Ḡf is exploited.
artitioning (52) row-wise and denoting

¯
fi = CAi−1

K ,

¯
fi = [ CAi−2

K BK CAi−3
K BK . . . CBK ],

i−1(k) = [ zT
k zT

k+1 . . . zT
k+i−2 ]

T
,

he ith row of (52) is

k+i−1 = Γ̄fiL̄pzp(k) + Ḡfizi−1(k) + ek+i−1 for

= 1, 2, . . . , f. (53)

sing least squares Γ̄fiL̄p can be estimated for i = 1, 2, . . . f,

hich then form ̂Γ̄f L̄p. Two subsequent options can be used in
he model reduction step similar to the open-loop SIM proce-
ure in the previous section. The first one is to perform SVD

r weighted SVD on ̂Γ̄f L̄p to obtain ̂̄Γf , then estimate model

arameters from ̂̄Γf . The other option is to form

¯
f Xk = Γ̄f L̄pZp � ̂Γ̄f L̄pZp

nd perform SVD to obtain the state sequence Xk, from which
he process A, B, C, D, and K are estimated (Chiuso & Picci,
005).

.4. Summary of closed-loop SIMs

Subspace identification methods are difficult to apply to
losed-loop data because of the use of an extended future hori-
on that introduces correlation between inputs and past noise.
o avoid this correlation several methods such as CVA and
SARX use pre-estimation to separate these two terms. The
IMPCA algorithm avoids the correlation by using the parity
pace instead of the observability subspace. Interestingly, the
xtended future horizon is not a necessary requirement for the
rojection or regression step of SIMs. It is only necessary to
xtend the order of the Hankel matrix, from which the observ-
bility matrix is reduced. The OKID (Phan et al., 1992) and the

MARX (Ljung & McKelvey, 1996) do not require the extended
uture horizon for the regression step. See (Qin & Ljung, 2006)
or more discussions. The closed-loop SIMs can be summarized
n Fig. 1.

T

F

Fig. 1. Closed-loop SIMs comparison.

It is interesting to compare the innovation estimation method
nd the whitening filter approach. They all partition the extended
tate space row-wise and utilize a multi-stage least squares
ethod to estimate system matrices. The innovation estimation
ethod starts from a state space model in innovations form,
hile the whitening filter approach is based on a state space
odel in predictor form.
The IEM, CVA and SIMPCA use the process A matrix to form

he observability matrix, while the WFA, OKID, and SSARX
se the predictor matrix AK. For open-loop unstable systems the
hitening filter approach can be numerically advantageous, as
emonstrated in (Chiuso & Picci, 2005). However, for bounded
ystems such as stable or integrating systems, this advantage
isappears. For limited data length where K is time varying, it
s better to use process A matrix.

The major difference between closed-loop SIMs and open-
oop SIMs is in estimating the observability subspace Γ f or Γ̄f .
he remaining steps to estimating model parameters are essen-

ially the same.

. Simulation example

To demonstrate how SIM works in closed-loop case, we use
he example in (Verhaegen, 1993). The model of the plant is
iven in transfer function form:

10−3(0.95q4 + 12.99q3 + 18.59q2 + 3.30q − 0.02)

q5 − 4.4q4 + 8.09q3 − 7.83q2 + 4q − 0.86
(54)

he output disturbance of the plant is a zero-mean white noise
ith standard deviation 1/3 filtered by the linear filter

1(q) = 0.01(2.89q2 + 11.13q + 2.74)

q3 − 2.7q2 + 2.61q − 0.9
he controller is

(q) = (0.61q4 − 2.03q3 + 2.76q2 − 1.83q + 0.49)

q4 − 2.65q3 + 3.11q2 − 1.75q + 0.39
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Fig. 4. The eigenvalues of estimated A matrix using SSARX: (×) estimated
pole, (+) system pole.
ig. 2. The eigenvalues of estimated A matrix using IEM: (×) estimated pole,
+) system pole.

he feedback mechanism is

k = −F (q)yk + rk

here rk is a zero-mean white noise sequence with standard devi-
tion 1. We take the number of data points j = 1200, and generate
00 data set, each time with the same reference input rk but with
ifferent noise sequence ek. We choose f = p = 20 for “innova-
ion estimation” approaches, and f = p = 30 for “whitening filter”
pproaches. In our simulation, we observe that to obtain unbi-

sed estimation the “whitening filter” approach needs larger f
nd p than the “innovation estimation” approach.

The pole estimation results for the closed-loop experiments
re shown in Figs. 2–5. From the results we can see that all

ig. 3. The eigenvalues of estimated A matrix using IEM1: (×) estimated pole,
+) system pole.

F
(

t
fi
s
h
m

7

7
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B

ig. 5. The eigenvalues of estimated A matrix using WFA: (×) estimated pole,
+) system pole.

he methods can provide consistent estimates. The “whitening
lter” approach produces the worst results, but there is no general
tatement we can make from this specific example. The SSARX
as one pair of outlying poles, but this could happen to other
ethods due to the actual noise based on our experience.

. Further discussions and conclusions

.1. Statistical properties
The statistical properties such as consistency and efficiency
f SIMs have been investigated recently (Bauer, 2003, 2005;
auer & Ljung, 2002; Chiuso & Picci, 2004; Gustafsson, 2002;
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ansson & Wahlberg, 1998; Knudsen, 2001; Larimore, 1996).
onsistency is concerned with the bias of the estimates while
fficiency is concerned with variance. All these variants are
hown to be generically consistent. For some special cases, it
as also been shown that CVA gives statistical efficiency and/or
ives the lowest variance among available weighting choices.
imulations also seem to indicate that CVA may have better vari-
nce properties in overall comparisons, see, e.g. (Ljung, 2003).

While most SIMs are consistent, few if any can achieve the
fficiency of the maximum likelihood estimate (MLE). For open-
oop SIMs Bauer and Ljung (2002) show that SIMs with the CVA
ype of weighting are optimal for the special case of white noise
nput perturbation and f → ∞. They also show that the variance
f the estimates improves as f increases. For closed-loop SIMs
nly variance expressions of the estimates are available (Chiuso

Picci, 2005).

.2. Practical considerations

The popularity of SIM in industry has increased tremen-
ously in recent years (Larimore, 2004; Zhao & Harmse, 2006).
ne of the reasons behind the rapid adoption of SIMs in practice

s the simplicity of SIMs and the inherent characteristics of mul-
ivariable industrial control problems, such as model predictive
ontrol (MPC) problems. While significant progress has been
ade in the analysis and understanding of SIMs, the following

ssues are still standing to some extent.

. Optimal input design for SIMs. Since SIMs are related to
high-order ARX, low-order input excitations such as sinu-
soidal signals are not very suitable for SIMs. Most SIMs
achieve favorable results when the input is white or close
to white. For industrial applications closed-loop testing and
simultaneous multivariable testing are preferred (Zhu & Van
Den Bosch, 2000).

. Connection to asymptotic methods. Since SIMs are closely
related to HOARX with model reduction using state space
models, it is natural to probe the connection to the asymptotic
methods, which has enjoyed surprising success in industry
(Zhu, 1998). The two types of methods essentially perform
the same first step, which is HOARX, see (Qin & Ljung,
2006). The only difference is in the model reduction step:
SIMs perform model reduction in time domain, while the
asymptotic methods do it in frequency domain.

. Time delay and order estimation. To improve the accuracy
of the final model one must estimate the time delay. This is a
trivial task for SISO models, but can be difficult for MIMO
processes. The order estimation is also an important problem.

. Zero model responses. For MIMO processes an input-output
pair can have zero responses, while the overall system is inter-
acting. For this case it is desirable to identify input-output
channels that have zero responses and keep them zero in the
model parametrization. While this is easily done for input-

output models, such as FIR models in DMC practice, it is
not trivial for state space models. Including parameters in
the model that are known to be zero usually increases the
variance of the model estimates.

C

C
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. Confidence intervals. It is desirable to be able to estimate the
confidence intervals for the estimated models. This is also
true for SIMs. A possible approach is to derive the model
confidence intervals based on the variance estimates of the
model parameters (Chiuso & Picci, 2005).

. Disturbance models: use or do not use? It is generally true that
correlated disturbances happen to the process to be identified
even during the data collection phase. Therefore, it is usually
a good idea to identify the process model and the distur-
bance model. However, most industrial practice does not use
the identified disturbance model. One rationale behind this is
that the disturbance characteristics change very often. How-
ever, without using a disturbance model, the power of Kalman
filtering is ignored. An important issue is to decide whether
the disturbance model is representative for most of the distur-
bance scenarios, that is, whether the process is “fully” excited
in the disturbance channel.

. Model quality assessment. It is important to assess the model
quality both during the identification phase and during on-
line use. Due to the time-varying nature of industrial pro-
cesses, on-line model assessment is necessary to determining
whether model re-identification is needed. The assessment
task includes process model assessment and disturbance
model assessment.

.3. Conclusions

Subspace identification methods have enjoyed rapid develop-
ent for both closed-loop systems and open-loop processes. The

ttractive features include simple parametrization for MIMO
ystems and robust noniterative numerical solutions. These fea-
ures lead to their rapid adoption in industry. There are, however,

any unsolved issues in both statistical analysis and practical
onsiderations. Future research should be focused on further
nderstanding of the statistical properties and resolving the prac-
ical issues.
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